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Abstract
In this work, the steady-state mass transfer of a non-reactive species in a tubular separator involving a porous
membrane is studied. This type of equipment has received considerable attention in the literature since it can be
used for gas-gas separation processes. In specific, in this work we are interested in studying transport of oxygen
from an air current to a pure helium flow. The air is transported in the annular region, whereas the helium is flowing
in countercurrent within the inner compartment of the system. The membrane is permeable to gases in different
proportions; however, only oxygen is assumed to constitute a dilute solution in both regions of the system. To derive
the mathematical model, we averaged the pointwise equations in the system cross-section generating a system of
two ordinary differential equations representing non-equilibrium mass transfer in each region of the system. These
upscaled equations are written in terms of effective-medium coefficients that capture the essential features from the
pointwise transport and are predicted from the solution of the associated closure problem. To evaluate the predictive
capabilities of the model, we compared the concentration profiles with those from solving the pointwise equations.
The influence of the membrane permeability to oxygen transfer is studied and we found a close correspondence
between the pointwise and upscaled models.

Keywords: mass transfer, tubular membrane separator, oxygen transfer, non-equilibrium model, upscaling.

Resumen
En este trabajo, se estudia la tranferencia de masa en estado estacionario de una especie no reactiva en un

separador tubular que involucra una membrana porosa. Este tipo de equipo ha recibido considerable atención en la
literatura ya que puede usarse en procesos de separación gas-gas. En especı́fico, en este trabajo estamos interesados
en estudiar el transporte de oxı́geno de una corriente de aire hacia un flujo de helio puro. El aire es transportado en la
región anular, mientras que el helio fluye a contracorriente en el compartimiento interno del sistema. La membrana
es permeable a los gases en diferentes proporciones; sin embargo, se supone que sólo el oxı́geno forma una solución
diluida en ambas regiones del sistema. Para desarrollar el modelo matemático, se promediaron las ecuaciones
puntuales en la sección transversal del sistema, lo que da lugar a un sistema de dos ecuaciones diferenciales
ordinarias representando la transferencia de masa de no equilibrio en cada región del sistema. Estas ecuaciones
escaladas están escritas en términos de coeficientes de medio efectivo que capturan las caracterı́sticas esenciales
del transporte puntual y se predicen a partir de la solución del problema de cerradura asociado. Para evaluar las
capacidades predictivas del modelo, se compararon los perfiles de concentración con los que resultan de resolver las
ecuaciones puntuales. Se estudió la influencia de la permeabilidad de membrana sobre la transferencia de oxı́geno y
encontramos una cercana correspondencia entre los modelos puntual y escalado.

Palabras clave: transferencia de masa, separador tubular de membrana, transferencia de oxı́geno, modelo de no
equilibrio, escalamiento.
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1 Introduction
Membrane separation processes have significantly
progressed during the past two decades and have
reached a development level that has allowed
studying both industrial-scale and nano-scale systems
(Faucheux, 2008; Rebollar-Perez et al., 2010).
According to Coronas and Santamarı́a (1999), most
membrane applications can be classified in three
groups: as an extractor, as a distributor or as a
contactor. In these cases the membrane can be used
for separation purposes and to carry out catalytic
reactions.

Due to its molecular sieving effect, zeolite
membranes are able to discriminate between the
components of liquid or gas mixtures (Bowen et al.,
2004; McLeary et al., 2006; Freeman et al., 2008;
Gascon et al., 2012). Among several applications of
membranes (Hernández et al., 2012), their use in gas-
phase separation processes has received considerable
interest during the last years. In particular, pure
oxygen has been regarded as a high economically
and environmentally safe feedstock for the steel and
cement industries and also for the gasification of coal
in oxy-fuel power plants, among other applications
(Wang et al., 2004; Jiang et al., 2011). Nevertheless,
the production of essentially pure oxygen is very
difficult since some nitrogen always permeates with
the oxygen through the membrane (Zhu et al., 2008;
Liang et al., 2010). Therefore, a proper description
of the gases diffusion within the pores is needed to
understand this process. To carry out the separation
of oxygen from the gas current, a shell-and-tube
permeator (Fig. 1), has been suggested in the literature
with promising efficiencies (Li et al., 2000; Wang et
al., 2003, 2004).

Concerning mathematical modeling of tubular
membranes, Wang et al. (2004) reported a model
to simulate the isothermal steady-state air separation
process in a membrane permeator using helium
as carrier gas. These authors neglected the helium
permeation and assumed laminar flow. With these
assumptions they obtained a local differential equation
for the oxygen flow rate, an overall and an oxygen
material balance equations. These equations were
solved numerically using the Gear method. They
obtained the dependence of oxygen permeation
flux on the air and on the helium flow rates at
different temperatures and compared their numerical
results with their experimental results obtaining good
agreement. Their model also allowed them to predict
the local O2 permeation flow rate.

Another approach is the use of molecular
dynamics to understand the behavior of tubular
membranes. For example, Abdel-Jawad et al. (2007)
report a computational fluid dynamic approach to
integrate diffusion through a molecular sieve silica
membrane described by the Stefan-Maxwell model.
Continuum gas flows were described by the Navier-
Stokes equations in 2D at steady state. They found that
the partial pressure axial distributions were constant in
the feed /retentate and the permeated streams. Besides,
the radial variation of axial velocity across the flow
was practically the same for all axial positions at the
permeate stream. They also found a linear behavior of
the axial velocity with the axial coordinate.

In this work, we present a different approach based
on the hierarchical nature (Cushman, 1997) of the
tubular membrane permeator (Fig. 1). In this case,
there are two types of transport phenomena taking
place, one at the macroscale (at permeator scale) and
another at the microscale (at the cross-section). As
matter of fact, many transport processes of hierarchical
nature are driven by transport phenomena taking place
at the interfaces as explained by Whitaker (2009).
The coupling between transport phenomena at the
microscale and at the macroscale suggests that the
governing equations at the macroscale can be derived
by properly averaging their microscale counterparts.
In this work, the averaging process is based upon the
volume averaging method (Whitaker, 1999) following
an approach similar to that used by Wood (2009) and
it basically consists on: 1) applying an averaging
operator to the partial differential equations governing
transport at the microscale; 2) expressing any
remaining microscale quantity in terms of its average
and spatial deviations; 3) deriving an expression for
the spatial deviations in terms of average properties
and 4) defining effective medium coefficients in terms
of filters of the microscale information. Other works
have been presented in the literature using similar
upscaling approaches (Hussain, 2006; Kumar et al.,
2013).

Since mass transport is taking place in the two
portions of the system, two modeling approaches can
arise for the macroscale description (see Chapter 2 in
Whitaker, 1999). The first one is a model based on
the assumption of local mass equilibrium and yields to
a single differential equation for describing transport
everywhere in the system. The second approach does
not require such assumption and the macroscopic
model consists of two coupled differential equations,
one for each region of the system.
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Fig. 1. Sketch of the tubular membrane permeator under consideration including the characteristic lengths of the
system.

Despite the appealing simplicity of the equilibrium
model, in this particular application it is not the
best approach because the intrinsic phenomena taking
place at the boundary do not appear explicitly in the
model. In addition, both portions of the system are not
in intimate contact. For this reason, in this work, we
will derive a non-equilibrium upscaled model for the
permeator sketched in Fig. 1 when used for oxygen
separation using a zeolite porous membrane.

The paper is organized as follows: In Section
2 we provide the governing equations for mass
and momentum transport at the microscale clearly
stating our departing assumptions. Since one of
them consists on regarding oxygen as a dilute
solute in both regions, we use Fick’s law as a
constitutive expression for the mass flux, thus making
it possible to solve the momentum transport equations
independently from the mass transport expressions.
In Section 3 we carry out the upscaling process for
the mass transport equations that leads to the non-
equilibrium model mentioned above. This section
also includes a sensitivity analysis of the effective-

medium coefficients involved in the model with the
main independent dimensionless parameters. To test
the predictive capabilities of the upscaled model,
in Section 4 we compare the concentration profiles
resulting from our approach with those resulting
from solving the pointwise equations (i.e., performing
direct numerical simulations). Finally, we provide
the corresponding conclusions along appendices with
supplementary material regarding the closure process.

2 Microscale model
Let us consider a separation unit like the one sketched
in Fig. 1. In the annular section, an air current is fed
and the oxygen is selectively permeated through the
membrane into the inner chamber where a carrier gas
(usually a noble gas, like helium) is fed at counter-
current. For the process under consideration, we adopt
the following assumptions that will aid in stating the
governing equations at the microscale:

1. Oxygen is sufficiently diluted in both sections
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of the system so that Fick’s law can be assumed
applicable.

2. The characteristic length of the porous
membrane (say `) is such that it can be regarded
as a boundary that separates the tube and the
shell. This is acceptable as long as ` � r1.

3. Inertial momentum transport is assumed
negligible with respect to viscous stress. This
implies that the Reynolds number must be much
less than the unity and laminar flow conditions
prevail.

4. All fluids are assumed incompressible and
Newtonian.

5. All fluid properties (i.e., viscosity, density,
molecular diffusivity) are constants.

6. The membrane permeability, P, is a known
constant that can be obtained from experimental
data.

7. Mass and momentum transport take place under
steady-state and isothermal conditions.

8. The axial component of the velocity provides
the most relevant contribution to momentum
transport.

9. All transport processes are axi-symmetrical.

Under these circumstances, the pointwise
governing equations for mass transfer of oxygen
(species A), in their molar form, are
Region-I

vzI
∂cAI

∂z
=

DAI

r
∂

∂r

(
r
∂cAI

∂r

)
+ DAI

∂2cAI

∂z2 , (1a)

Region-II

−vzII
∂cAII

∂z
=

DAII

r
∂

∂r

(
r
∂cAII

∂r

)
+ DAII

∂2cAII

∂z2 , (1b)

In the above we have denoted by Region − I to
the space occupied in the inner compartment of the
system, i.e., r ∈ (0, r1) and z ∈ (0, L); whereas
Region − II represents the annular compartment, i.e.,
r ∈ (r1, r2) and z ∈ (0, L). In this way, DAI and
DAII represent the molecular diffusivities of oxygen in
helium and in air, respectively. The minus sign in Eq.
(1b) follows from adopting counter-current operation
conditions.

For momentum transport, the governing equations
are,

Region-I

0 =
∂pI

∂z
− ρIg +

µI

r
∂

∂r

(
r
∂vzI

∂r

)
, (2a)

Region-II

0 = −∂pII

∂z
+ ρIIg +

µII

r
∂

∂r

(
r
∂vzII

∂r

)
, (2b)

The differential equations (1), (2) are subject to the
following boundary conditions

at z = 0, cAI = cAI0;
∂cAII

∂z
= 0; pI = pI0; pII = pII0

(3a)

at z = L,
∂cAI

∂z
= 0; cAII = cAIIL; pI = pIL; pII = pIIL

(3b)

at r = r1, DAI
∂cAI

∂r
= DAII

∂cAII

∂r
(3c)

at r = r1, −DAI
∂cAI

∂r
= P(cAI − cAII) (3d)

at r = r1, vzI = 0; vzII = 0 (3e)

at r = r2, DAII
∂cAII

∂r
= 0 (3f)

at r = r2, vzII = 0 (3g)

Naturally the concentration and velocity fields are
constrained to be defined for all r and z. According
to the Neumann-type boundary conditions in eqs. (3a)
and (3b), the system length, L, is assumed large
enough so that, at the outlets, the concentration of
oxygen in the inner and annular regions are no longer
a function of the z position. As assumed above, the
porous membrane is regarded as a boundary where
we have imposed continuity of the mass flux and a
jump in the concentration (see eqs. 3c and 3d). In
specific, the boundary condition in Eq. (3d) appears
to be consistent with previous studies (see Section 2
in Wang et al., 2004). In addition, possible slips of the
velocity fields at the fluid-porous medium boundaries
are neglected according to Eq. (3e). Finally, the shell
wall is assumed impermeable to mass transfer (see Eq.
3f) and non-slip conditions are also assumed to apply
(see Eq. 3g).
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2.1 Velocity fields

Since flow is fully developed and momentum transport
is assumed independent of mass transfer, one may
solve the corresponding boundary-value problems to
obtain the following well-known expressions (for
details, see Sections 2.3 and 2.4 in Bird et al., 2007),

vzI =
(PI0 −PIL)r2

1

4µI L

1 − (
r
r1

)2 (4a)

vzII =
(PII0 −PIIL)r2

2

4µII L

1 − (
r
r2

)2

−
1 − r2

1

r2
2

 ln r/r2

ln r1/r2


(4b)

here Pi = pi − ρig (i = I, II). These expressions will
be used in the following section that is devoted to the
derivation of the upscaled model. From this point on,
the velocity fields will be treated as known functions
of r.

3 Upscaling

3.1 Unclosed model

As briefly described in the introduction, the upscaling
process consists of several steps, which will be
detailed in this section. Since we are interested in the
cross-sectional averaged concentration, we define the
averaging operator,

〈cA〉 =
1
πr2

2

θ=2π∫
θ=0

r=r2∫
r=0

cArdrdθ =
2
r2

2

r=r2∫
r=0

cArdr (5)

Notice that the second equality holds under the
axi-symmetric assumption for mass transport.
Furthermore, since

cA =

{
cAI , ∀r ∈ [0, r1]
cAII , ∀r ∈ [r1, r2] (6)

we may decompose Eq. (5) into

〈cA〉 =

(
r1

r2

)2

〈cAI〉I +

1 − (
r1

r2

)2 〈cAII〉II (7)

Here we introduced the averaging operators,

〈cAI〉I =
2
r2

1

r=r1∫
r=0

cAIrdr (8a)

〈cAII〉II =
2

r2
2 − r2

1

r=r2∫
r=r1

cAIIrdr (8b)

Notice that the averaged concentrations are only
functions of the z-direction. In the following, we
will refer to the average concentration defined in
Eq. (5) as the weighted averaged concentration
and to the concentrations defined in eqs. (8) as
the average concentrations in each region. Our
goal in the following paragraphs is to derive the
governing differential equations for 〈cAI〉I and 〈cAII〉II .
In an equilibrium approach, one would derive the
governing expression for 〈cA〉 and find the conditions
under which this average concentration is a good
representation for the process. However, since we
are pursuing a non-equilibrium approach, we are
interested in deriving the governing expressions for
〈cAI〉I and 〈cAII〉II .

For the time being, let us direct the attention to the
inner region of the system, and apply the averaging
operator defined in Eq. (8a) to Eq. (1a) to obtain,〈

vzI
∂cAI

∂z

〉I

= DAI

〈
1
r
∂

∂r

(
r
∂cAI

∂r

)〉I

+ DAI
d2〈cAI〉I

dz2

(9)

here we have assumed that the molecular diffusivity is
a constant within the averaging domain. In addition,
since the limits of integration are independent of the
z-direction, we freely exchanged differentiation and
integration in the last term on the right-hand side of
Eq. (9).

On the basis of the definition given in Eq. (8a) we
can further develop the average of the first diffusive
term in Eq. (9) as follows,

DAI

〈
1
r
∂

∂r

(
r
∂cAI

∂r

)〉I

=
2DAI

r2
1

r=r1∫
r=0

∂

∂r

(
r
∂cAI

∂r

)
dr

=
2DAI

r1

∂cAI

∂r

∣∣∣∣∣
r=r1

(10)

Directing our attention to the convective term
in Eq. (9), we find it convenient to decompose
the concentration and velocity fields in terms of
the corresponding averages and spatial deviations
according to the following expressions (Gray, 1975),

cAI = 〈cAI〉I + c̃AI (11a)

vzI = 〈vzI〉I + ṽzI (11b)

Since we are pursuing a local upscaled model (see
Wood and Valdés-Parada, 2013 for a discussion about
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local and nonlocal upscaled models), it is necessary
to impose the following average constraints to the
deviation fields:

〈ṽzI〉I = 0; 〈c̃AI〉I = 0 (12)

Under these circumstances, we may express the
convective term in Eq. (9) as follows〈

vzI
∂cAI

∂z

〉I

= 〈vzI〉I d〈cAI〉I
dz

+

〈
ṽzI
∂c̃AI

∂z

〉I

(13)

here we have taken into account the fact that average
quantities are only functions of the z-direction as well
as the average constraints in Eq. (12).

Substitution of eqs. (10) and (13) into Eq. (9)
yields

〈vzI〉I d〈cAI〉I
dz

+

〈
ṽzI
∂c̃AI

∂z

〉I

︸      ︷︷      ︸
convective f ilter

= DAI
d2〈cAI〉I

dz2

+
2DAI

r1

∂c̃AI

∂r

∣∣∣∣∣
r=r1︸              ︷︷              ︸

di f f usive f ilter

(14a)

Notice that we have used the concentration spatial
decomposition on the last term of the above result
taking into account the fact that ∂〈cAI〉I/∂r = 0.
In addition, we have regarded the terms involving
deviations fields as filters of information from the
microscale (Whitaker, 1999).

Repeating the steps followed so far to the annular
region, we obtain

− 〈vzII〉II d〈cAII〉II

dz
−

〈
ṽzII

∂c̃AII

∂z

〉II

= DAII
d2〈cAII〉II

dz2

− 2DAIIr1

r2
2 − r2

1

∂c̃AII

∂r

∣∣∣∣∣
r=r1

(14b)

Indeed, this expression takes into account the
boundary condition given in Eq. (3f). At this point in
the analysis, one can not make further progress until
the velocity and concentration deviations fields are
available. The process of deriving expressions for the
deviations in terms of averaged quantities is known as
closure (Whitaker, 1999) and it will be performed in
the following paragraphs.

3.2 Closure problem

For momentum transport, since we have the pointwise
velocity fields, we may apply the averaging operators

given in eqs. (8a) and (8b) to eqs. (4a) and (4b),
respectively, to obtain,

〈vzI〉I =
(PI0 −PIL)r2

1

8µI L
(15a)

〈vzII〉II =
(PII0 −PIIL)r2

2

8µII L

1 + ξ2
1 +

1 − ξ2
1

ln ξ1

 (15b)

As a matter of convenience, we introduce the
dimensionless parameter

ξ1 =
r1

r2
(16)

In terms of the averaged velocities, we may rewrite
eqs. (4a) and (4b) as follows,

vzI = 2〈vzI〉I
1 − (

ξ

ξ1

)2 (17a)

vzII = 〈vzII〉II

 (ξ2
1 − 1) ln ξ/ξ1 +

(
ξ2

1 − ξ2
)

ln ξ1

(1 + ξ2
1) ln ξ1 + 1 − ξ2

1


(17b)

In the above expressions we introduce the
dimensionless variable

ξ =
r
r2

(18)

In this way, subtracting 〈vzI〉I on both sides of Eq.
(17a) yields,

ṽzI = 〈vzI〉I
1 − 2

(
ξ

ξ1

)2 (19a)

Accordingly, the result of subtracting 〈vzII〉II on both
sides of Eq. (17b) is,

ṽzII

〈vzII〉II = 2

 (ξ2
1 − 1)(2 ln ξ/ξ1 + 1) +

(
ξ2

1 − 2ξ2 − 1
)

ln ξ1

(1 + ξ2
1) ln ξ1 + 1 − ξ2

1


=

1
δ

(
−2 ln ξ − 2χξ2 + ln ξ1 − 1

)
(19b)

For the sake of simplicity we introduce,

χ =
ln ξ1

1 − ξ2
1

; δ = (1 + ξ2
1)χ + 1 (20)

The results in eqs. (19a) and (19b) are the desired
results for the velocity deviations. In addition, it can
be proved that the expressions in eqs. (19a) and (19b)
satisfy the average constraints 〈ṽzI〉I = 〈ṽzII〉II = 0.

It should be stressed that the derivation of the
velocity deviations was straightforward because the
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pointwise velocity fields were available. However,
the same is not true for mass transfer. In this
case, it is more convenient to derive and solve
the governing boundary-value problem for the
concentration deviations. The derivation of this
problem is provided in Appendix A and it is given by
the differential equations (A.6) and (A.7), which are
subject to the boundary conditions given in (A.9) and
the average constraints in Eq. (A.10). The length-scale
constraints supporting the derivation of this problem
are

PeI r1

L
� 1; PeII r2

L
� 1; r2

1 � L2; r2
2 � L2 (21)

which are expressed in terms of two Péclet numbers
PeI ≡ 〈vzI〉Ir1/DAI and PeII ≡ 〈vzII〉IIr2/DAII .
The constraints provided above bound the range of
applicability of the upscaled model and they play a
crucial role in the comparison with direct numerical
simulations as will be shown in Section 4.

As stressed in Appendix A, the closure problem
is linear and it is conveniently written in terms of
volume and surface sources; hence, the following
superposition solutions can be proposed

c̃AI = bI,I (r)
d〈cAI〉I

dz
+ bI,II (r)

d〈cAII〉II

dz
+ sI (r)

(
〈cAI〉I − 〈cAII〉II

)
(22a)

c̃AII = bII,I (r)
d〈cAI〉I

dz
+ bII,II (r)

d〈cAII〉II

dz
+ sII (r)

(
〈cAI〉I − 〈cAII〉II

)
(22b)

Here the functions b and s are closure variables
that can be predicted from the solution of the closure
problem derived in Appendix A. The details of the
analytical solution of the closure problem are provided
in Appendix B. Comparing eqs. (B.6) with eqs. (22),
it results that

bI,I

r2
=

PeIξ1

4

 (2α + 1) ξ2

ξ2
1

− ξ4

2ξ4
1

− 1
3
− α

 (23a)

bI,II

r2
= −PeIIβ

24α
sI (23b)

sI = 12α
ξ2

ξ2
1

− 1
2

 (23c)

bII,I

r2
=

PeIξ1

24
sII (23d)

bII,II

r2
=

PeII

δ

ξ2

2
ln

ξ

ξ1
+
ξ4χ

8
−

γ1ξ
2

4 + γ2 ln ξ + γ0

1 − ξ2
1


(23e)

sII =
24DAIα(

1 − ξ2
1

)
DAII

ln ξ − ξ2

2
+ ξ2

1χ +
3 + ξ2

1

4

 (23f)

The parameters involved in these equations are
available in Appendix B (see eqs. B.5 and B.7).
Among these parameters, it is worth highlighting that
the coefficients α and β, as defined in eqs. (B.5b)
and (B.5c), are directly proportional to the modified
Sherwood number,

S h =
P r2

DAI
(24)

Consequently, an increment of the membrane
permeability, P will have a proportional effect in the
values of α and β. This observation will be relevant in
subsequent paragraphs. Before moving on, it is worth
noting that the modified Sherwood number, as defined
in Eq. (24) can be further developed as follows,

S h =
P `

De f f

De f f

DAI

r2

`
(25)

where the product P `/De f f can be identified
as the membrane Sherwood number, with De f f

being the effective diffusivity of oxygen in the
porous membrane. Certainly, the membrane Sherwood
number and the ratio De f f

DAI
are dimensionless quantities

that are not larger than 1; however the ratio r2/` is
larger than 1. From the above, it seems reasonable
to allow the modified Sherwood number to acquire
values that are either larger than or smaller than the
unity.

3.3 Closed model

Now that we have expressions for the concentration
and velocity deviations, we can return to the unclosed
expressions given in eqs. (14a) and (14b) and
substitute the deviations fields in the corresponding
integral terms in order to obtain,
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Region-I: (
〈vzI〉I + 〈ṽzI sI〉I − 2DAI

r1

∂bI,I

∂r

∣∣∣∣∣
r1

)
d〈cAI〉I

dz
−

(
〈ṽzI sI〉I +

2DAI

r1

∂bI,II

∂r

∣∣∣∣∣
r1

)
d〈cAII〉II

dz

=
(
DAI − 〈

ṽzIbI,I
〉I
) d2〈cAI〉I

dz2 − 〈
ṽzIbI,II

〉I d2〈cAII〉II

dz2 +
2DAI

r1

∂sI

∂r

∣∣∣∣∣
r1

(
〈cAI〉I − 〈cAII〉II

) (26a)

Region-II:−〈vzII〉II + 〈ṽzII sII〉II +
2DAIIr1(
r2

2 − r2
1

) ∂bII,II

∂r

∣∣∣∣∣
r1

 d〈cAII〉II

dz
+

−〈ṽzII sII〉II +
DAIIr1(
r2

2 − r2
1

) ∂bII,I

∂r

∣∣∣∣∣
r1

 d〈cAI〉I
dz

=
(
DAII +

〈
ṽzIIbII,II

〉II
) d2〈cAII〉II

dz2 +
〈
ṽzIIbII,I

〉II d2〈cAI〉I
dz2 − 2DAIIr1(

r2
2 − r2

1

) ∂sII

∂r

∣∣∣∣∣
r1

(
〈cAI〉I − 〈cAII〉II

) (26b)

The above equations can be further developed
after performing the corresponding integration and
differentiation operations, the resulting expressions
are written as follows

Region-I:

vI,I
d〈cAI〉I

dz
− vI,II

d〈cAII〉II

dz
= DI,I

d2〈cAI〉I
dz2

− DI,II
d2〈cAII〉II

dz2 − hI,II

AI

(
〈cAI〉I − 〈cAII〉II

)
(27a)

Region-II:

− vII,II
d〈cAII〉II

dz
− vII,I

d〈cAI〉I
dz

= DII,II
d2〈cAII〉II

dz2

− DII,I
d2〈cAI〉I

dz2 +
hI,II

AII

(
〈cAI〉I − 〈cAII〉II

)
(27b)

Here we have identified the following effective-
medium velocity and dispersion coefficients,

vI,I = 〈vzI〉I (1 − 4α) ; vI,II = −2
〈
vz,I

〉I
(
α +

PeIIβ

PeIξ1

)
;

vII,I

〈vzII〉II =
〈ṽzII sII〉II

〈vzII〉II −
〈vzI〉I
〈vzII〉II

2ξ2
1α(

1 − ξ2
1

) (28a)

vII,II

〈vzII〉II = 1 − 〈ṽzII sII〉II

〈vzII〉II +

ξ2
1

[
ξ2

1 − 1 + γ1 − ξ2
1 ln ξ1 +

2γ2

ξ2
1

]
(
1 − ξ2

1

)2
δ

(28b)

DI,I

DAI
= 1 +

(
PeI

)2
(1 + 4α)

48
; DI,II =

PeII PeIDAIβ

12ξ1
;

DII,II

DAII
= 1 +

〈
ṽzIIbII,II

〉II

DAII
; DII,I = −〈ṽzIIbII,I

〉II

(28c)

Moreover, we introduced the interfacial mass transport
coefficient as

hI,II = − 48παDAI

=

 6
DAI

+
24
Pr1

+
1

DAII

24χ + 6
(
3 − ξ2

1

)
ξ2

1 − 1



−1 (

1
48π

)−1

(28d)

as well as the area coefficients

AI = r2
2πξ

2
1; AII = r2

2π
(
1 − ξ2

1

)
(28e)

The sign choices for the coefficients defined in eqs.
(27) were decided on the basis of defining all effective
medium coefficients as positive-definite quantities. In
addition, the analytical expressions of the integral
terms
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〈
ṽzIIbII,II

〉II

DAII
=

 PeII

(1 − ξ2
1)δ

2



(
ξ2

1 − 1
)

16

[
1 − ξ4

1 + 2 ln ξ1

(
1 + ξ4

1

)]
− γ1

4

ξ4
1 ln ξ1 +

1 − ξ4
1

4


− ln ξ1

12

−ξ6
1 ln ξ1 −

1 − ξ6
1

6

 + γ2

[
1 − ξ2

1 + 2ξ2
1 ln ξ1 − 2ξ2

1(ln ξ1)2
]

+ ln ξ1



1
3

ln ξ1 +
1 − ξ6

1

6

 − γ1
1 − ξ6

1

6
(
ξ2

1 − 1
)

+

(
1 − ξ8

1

)
ln ξ1

16
(
ξ2

1 − 1
) +

γ2(
ξ2

1 − 1
) ξ4

1 ln ξ1 +
1 − ξ4

1

4





+ (1 − ln ξ1)



(
1 − ξ2

1

)
4

ln ξ1 +
1 − ξ4

1

4

 + γ1
1 − ξ4

1

8

−
(
1 − ξ6

1

)
ln ξ1

24
− γ2

ξ2
1 ln ξ1 +

1 − ξ2
1

2







(29a)

〈ṽzII sII〉II〈
vz,II

〉II =
−3DAIα

δ
(
1 − ξ2

1

)2
DAII



9 − ξ2
1

(
8 + ξ2

1 + ln ξ1

(
16 ln ξ1 − 16 − 4ξ2

1

))
−2 ln ξ1

4
(
ξ6

1 − 1
)
− 12ξ4

1 ln ξ1

3
(
ξ2

1 − 1
) + ξ2

1 + 1


+2 (1 − ln ξ1)

(
ξ2

1 − 1
) ξ2

1 + 3 − 4ξ2
1 ln ξ1(
ξ2

1 − 1
) 


(29b)

〈
ṽzIIbII,I

〉II

DAII
=

PeI PeIIξ1

24
〈ṽzII sII〉II〈

vz,II
〉II (29c)

In the following section we will evaluate the
capabilities of the macroscale model, as defined
by eqs. (27), by comparing the predictions of the
concentration profiles with those resulting by solving
the microscale equations (i.e., by performing Direct
Numerical Simulations or DNS). Before performing
this comparison, it is worth remarking some relevant
features of the macroscale model and the associated
coefficients:

• Mass transfer in each region is influenced by:
convective and dispersive transport taking place
in both regions as well as by the inter-regional
mass exchange. The associated physical
meaning of each effective medium coefficient
is the following: hI,II is the interfacial mass
transport coefficient that encompasses the
influence of the porous membrane and can be
analytically predicted from Eq. (28d). In fact,

from this expression, it is clearly shown that
this coefficient involves the inverse of the sum
of diffusive and interfacial resistances in the
membrane. vI,I and vII,II are the velocity fields
in each region that are modified by the mass
exchange caused by the porous membrane. As
a matter of fact, in the limit as α → 0, it
results that vI,I = 〈vzI〉I and vII,II = 〈vzII〉II ,
respectively. The coefficients vI,II and vII,I

can be thought of as the effective convective
velocities exerted by the stream in Region
II over the one in Region I and vice versa,
respectively. These velocity coefficients are non-
trivial functions of diffusion and convection in
both regions and do not appear in the pointwise
model because they are a direct result of the
upscaling process. In a similar way, DI,II and
DII,I are the dispersion coefficients that account
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for the influence of this transport mechanism
in Region II over Region I and vice versa,
respectively and are the outcome of upscaling.

For cases in which the porous membrane
exhibits little or null permeability to mass
transfer, it follows immediately that h tends to
zero. Therefore, from Eq. (28c), we note that
4α � 1, hence the dispersion in the inner region
of the system, DI,I reduces to the classical
expression deduced by Taylor (1953, 1954):

DI,I

DAI
= 1 +

(
PeI

)2

48
(30)

Under these conditions, we also have that β �
1, and thus the following identities hold

DI,II = DII,I = 0 (31a)

vI,I = 〈vzI〉I ; vI,II = vII,I = 0; vII,II = −〈vzI〉II

(31b)

Therefore, the macroscale model reduces to the
following set of uncoupled equations,

Region-I:

〈vzI〉I d〈cAI〉I
dz

= DI,I
d2〈cAI〉I

dz2 (32a)

Region-II:

− 〈vzI〉II d〈cAII〉II

dz
= DII,II

d2〈cAII〉II

dz2 (32b)

which are the classical convection-dispersion
expressions for flow in a tube and in the annular
section of two tubes, respectively.
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Fig. 2. Dependence of the dispersion coefficients with the Péclet and modified Sherwood numbers taking ξ1 = 0.5,
L = 5r2, DAI/DAII = 1 and for a), b) PeII = 1 and for c), d) PeI = 1.
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Fig. 3. Dependence of the effective velocity
coefficients with the modified Sherwood number for
several values of DAI/DAII , taking ξ1 = 0.5, L = 5r2
and PeI = PeII = 1.

• As shown in Fig. 2, the dispersion coefficients
DI,I , DI,II , DII,I and DII,II are all functions of
the Péclet numbers of both regions. We note that
the functionality of DI,I with PeI and the one
of DII,II with PeII , resembles the typical shape
reported by Taylor (1953,1954). This tendency
can be divided in two portions: the first one (for
Péclet number values much smaller than 1) is

10−2 10−1 100 101 102
0

5

10

15

20

25
DAI

DAII
= 0.1
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0.5

0.75

1.0

1.5

S h

h
DAI

Fig. 4. Dependence of the interfacial transport
coefficient with the modified Sherwood number for
several values of DAI/DAII , taking ξ1 = 0.5, L = 5r2
and PeI = PeII = 1.

dominated by convection and thus the
dispersion coefficient is equal to the molecular
diffusivity. The second portion (for Péclet
number values larger than 1) is dominated by
diffusion and the dispersion coefficient rapidly
increases with the Péclet number. Regarding the
dependence of the dispersion coefficients with
the membrane permeability we have, on the one
hand, that the coefficients DI,II and DII,I are
directly proportional to the Sherwood number
and are highly sensitive to variations of this
parameter. On the other hand, the dispersion
coefficients DI,I and DII,II are practically
insensitive to variations of S h. This implies
that cross-regional dispersion is, as expected,
favored by the membrane permeability. The
reason for the insensitivity of DI,I and DII,II

with S h is due to the fact that, for the conditions
used in Fig. 2, α is, at most, on the order of
10−2. Finally, it is worth noting that the values
of DI,I and DII,II are orders of magnitude larger
than those for DI,II and DII,I .

• About the functionality of the effective velocity
coefficients with the membrane permeability,
we have, from the results provided in Fig.
3, that the coefficients vI,I , vI,II and vII,I are
increasing functions of the modified Sherwood
number. In this figure we have not included a
plot of vII,II versus S h because this coefficient
is independent of the membrane permeability.
Although not shown in Fig. 3, it should be clear
that vI,I and vI,II are directly proportional to PeI ,
whereas vII,I and vII,II are directly proportional

www.rmiq.org 247



Valdés-Parada et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 13, No. 1 (2014) 237-257

0.0 0.2 0.4 0.6 0.8 1.0

a) b)

Virtual 
measuring 

ports 

Fig. 5. Example of the dimensionless microscale concentration fields in a) the tube (Region-I) and b) the shell
(Region-II) taking ξ1 = 0.5, r2/L = 0.1, DAI/DAII = 1 and PeI = PeII = 1. The virtual measuring ports are
cross-sectional cuts along the vertical axis in the tubular and annular regions.

to PeII . In Fig. 3, we have also shown the
dependence of the velocity coefficients with
the ratio of diffusivities DAI/DAII , we observe
that, for S h > 1, vI,I and vI,II are inversely
proportional to this ratio. In other words, the
convective velocities in Region I are favored
when the oxygen diffuses more freely in Region
II than in Region I and the opposite is true
for vII,I . Finally, the interfacial mass transport
coefficient is an increasing function of the
modified Sherwood number as shown in Fig. 4.
Interestingly, the functionality with the ratio of

diffusivities DAI/DAII is the same displayed by
vI,I and vI,II as shown in Figs. 3a and 3b.

4 Comparison with Direct
Numerical Simulations

In this section, we test the predictive capabilities
of the upscaled model by comparing the average
concentration profiles with those resulting from
solving the pointwise model as defined by eqs. (1) and
(3). In all the computations reported in this section we
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took cAI0 = 0, implying that the noble gas current is
always fed free from oxygen; in addition, we assume
that the oxygen fed in the shell section has a constant
concentration, cAIIL. With this in mind, from this point
on, we present the results in terms of the dimensionless
concentrations,

UAI =
cAI

cAIIL
; UAII =

cAII

cAIIL
(33)

The pointwise model was numerically solved using the
finite element method with the commercial software
Comsol Multiphysics 4.3b. In the solution process
we employed adaptive mesh refinements algorithms,
provided in the software in order to make the solution
independent of the number of mesh elements. In Fig.
5 we provide an example of the solution of this model
for a permeator having an aspect ratio of L = 10r2.
Notice that, especially at the bottom of the system,

the concentration profiles in each region of the system
are clearly different, thus supporting our assumption
of local mass non-equilibrium. As shown in the figure,
we incorporated several virtual measuring ports along
the equipment in order to compute the cross-sectional
dimensionless averaged concentrations 〈UAI〉I and
〈UAII〉II . Although in an actual experimental setup, it
may not be possible to have plenty measuring ports
(usually measurements are performed only at the inlets
and outlets of the system), in this work we find
it convenient to incorporate these sensors in order
to have information about the concentration profiles
inside the system.

Due to the non-trivial coupling of the upscaled
concentrations in eqs. (27), we solved the upscaled
model numerically subject to the following boundary
conditions,

Fig. 6. Dimensionless average concentration profiles obtained with direct numerical simulations (DNS) and
upscaling for a) Sh = 0.01, b) Sh = 0.1, c) Sh = 1 and d) Sh = 10, taking ξ1 = 0.5, L = 5r2, DAI/DAII = 0.5
and PeI = PeII = 1.
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6

Fig. 7. Dimensionless average concentration profiles obtained with direct numerical simulations (DNS) and
upscaling for a) PeI = 0.1, b) PeI = 1, c) PeI = 10 and d) PeI = 100, taking ξ1 = 0.5, L = 5r2, DAI/DAII = 0.5,
S h = 1 and PeII = 1.

at z = 0, 〈UAI〉I = 0;
d〈UAII〉II

dz
= 0; (34a)

at z = L,
d〈UAI〉I

dz
= 0; 〈UAII〉II = 1; (34b)

using finite differences schemes involving, as in
the case of the microscale problem, adaptive mesh
refinements schemes. In figs. 6-9, we provide
several plots comparing the cross-sectional averaged
concentration profiles arising from the upscaled model
and those being computed from the virtual measuring
ports in the DNS by varying the modified Sherwood
number (Fig. 6), the Péclet numbers associated to

Regions-I and -II (Figs. 7 and 8, respectively) and the
ratio of molecular diffusivities DAI/DAII (Fig. 9). For
the sake of simplicity, in all the computations we took
ξ1 = 0.5 and L = 5r2. Concerning these results, the
following comments are in order:

• From the results in Fig. 6, we appreciate that,
as the membrane permeability increases (i.e., as
the modified Sherwood number grows), there
is a better exchange of oxygen between both
regions and it is thus reasonable to think that, for
S h > 1, the concentration of oxygen in Region-
I approaches the unity at the exit (as shown in
Fig. 6d).
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Fig. 8. Dimensionless average concentration profiles obtained with direct numerical simulations (DNS) and
upscaling for a) PeII = 0.1, b) PeII = 1, c) PeII = 10 and d) PeII = 100, taking ξ1 = 0.5, L = 5r2, DAI/DAII = 0.5,
S h = 1 and PeI = 1.

Although good agreement (i.e., the relative error
percent between the DNS and upscaling is less
than 10%) is found in all the comparisons,
we note that the largest deviations are found
at the exit of Region-II when taking S h =

10. Since this difference appears mainly near
the boundary, it leads us to think that the
differences arise from the boundary conditions
and, in specific, from the location of the dividing
surface as suggested by Chandesris and Jamet
(2007). This effect is to be expected to be
reduced for situations in which L � r2.

• In Fig. 7, we present the results of changing
the Péclet number in Region-I in three orders

of magnitude ranging from 0.1 to 100. Since
this dimensionless number relates the rate of
convection to the rate of diffusion in Region-I,
it follows that if PeI < 1 (Fig. 7a), the residence
time of oxygen in the system is increased.
Hence, for values of PeI larger than 1, the
permeator exhibits a poor performance. We note
also that for PeI < 10, there is good agreement
between the concentration profiles predictions
resulting from upscaling and DNS. However, as
shown in Fig. 7d, we observe that for PeI = 100
there is a clear difference in the predictions.
This result is to be expected because PeIr1/L =

10, violating the first inequality in (21) that
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Fig. 9. Dimensionless average concentration profiles obtained with direct numerical simulations (DNS) and
upscaling for a) DAI/DAII = 0.25, b) DAI/DAII = 0.5, c) DAI/DAII = 1 and d) DAI/DAII = 1.5, taking ξ1 = 0.5,
L = 5r2, S h = 1 and PeI = PeII = 1.

was imposed in the derivation of the closure
problem.

• In Fig. 8, we perform a similar analysis to the
one performed in Fig. 7, but this time in terms
of the Péclet number associated to Region-II.
In this case, since oxygen is fed in Region-II,
an increment in the convection rate translates
into more oxygen available to be transported
into Region-I. Notice that, as PeII increases, the
concentration profiles in Region-II tend to the
unity (see figs. 8c and 8d). For this reason, we
do not observe a plausible difference between

the DNS and the upscaled predictions, even for
PeII = 100 (Fig. 8d), which does not satisfy the
second inequality in (21).

• Finally, in Fig. 9 we present the functionality
of the concentration profiles with the ratio of
molecular diffusivities DAI/DAII . We observe
that, if DAII > DAI , the separation process
is favored (See Fig. 9a) since the outlet
of the noble-gas stream tends to the unity.
Interestingly, as the ratio DAI/DAII increases,
the oxygen concentration in the outlet of the
annular section (i.e., the air stream) decreases
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while the corresponding values at the outlet of
the tube are practically unaffected. In all the
computations we observed a close agreement
of the predictions resulting from upscaling and
DNS.

Conclusions

In this work we derived an upscaled model for
studying oxygen separation from an air current, in a
shell and tube permeator involving a porous zeolite
membrane, to a noble gas current. The model was
derived by taking the cross-sectional average in the
tube (Region-I) and shell (Region-II) compartments of
the equipment and following the steps involved in the
method of volume averaging (Whitaker, 1999). The
model consists in a set of coupled ordinary differential
equations that are written in terms of effective-medium
coefficients, which were analytically computed from
the solution of the corresponding closure problems.
Our analysis showed that the model is sensitive to
the following dimensionless parameters: a modified
Sherwood number, the Péclet numbers associated to
each region and the ratio of molecular diffusivities
DAI/DAII . The model applicability is bounded by the
length-scale constraints given in (21). Hence, as long
as these constraints are met, the predictions from the
upscaled model are reliable as evidenced from our
comparison with direct numerical simulations.

Certainly, since we have the capability of solving
the microscale model, it is reasonable to question the
need for deriving upscaled models. Albeit the actual
computational capabilities allow solving this type of
problems, the number of computational nodes needed
(after refinement) to obtain a reliable solution of the
microscale model can be on the order of millions,
whereas for the solution of the upscaled model,
this number reduces in three orders of magnitude.
Furthermore, the fact that the upscaled model is
written in terms of effective medium coefficients allow
studying many features from the transport process, just
by analyzing the dependence of these coefficients with
the relevant variables and parameters of the system.
Moreover, in practice, the interest is usually directed
to average quantities to evaluate the performance of
the system.

As a final point of discussion, we find it convenient
to stress the need for a nonequilibrium upscaled model
in this particular application. To address this issue,
we examine the assumptions and consequences related
to an equilibrium model. As explained above, the

cross-sectional averaged concentration, 〈cA〉 can be
expressed in terms of the averaged concentration of
each region according to

〈cA〉 = ε〈cAI〉I + (1 − ε)〈cAII〉II (35)

here ε = r2
1/r

2
2. Under local mass equilibrium

conditions, one may assume that (Whitaker, 1999)
(〈cAI〉I − 〈cAII〉II)/〈cA〉 � 1 and it follows that

〈cAI〉I ≈ 〈cA〉; 〈cAII〉II ≈ 〈cA〉 (36)

which implies that the concentration at the shell and
tube compartments can be reasonably approximated
by a single concentration value. Under these
conditions, one may make the substitutions shown in
Eq. (36) in eqs. (27) and add the resulting expressions
to obtain,

v
d〈cA〉

dz
= D

d2〈cA〉
dz2 (37)

in which, v = vI,I − vI,II − vII,I − vII,II and D =

DI,I − DI,II − DII,I + DII,II . This expression is clearly
simpler to solve than eqs. (27); however, the price to
be paid for this simplification is the lost of information
from the interaction with the porous membrane, which
is crucial in this process. Furthermore, in practice, it
is reasonable to think that experimental measurements
are taken at the inlets and outlets of the tube and shell
compartments and not at the whole cross section of the
system.

From the above, we conclude that the derivation
of the upscaled non-equilibrium model provided here
is relevant to permeators designed for the separation
of oxygen through a noble gas current. In fact,
in our research group we are currently performing
experiments in a permeator analogous to the one
studied in this paper and in a future work we will
present the comparison of the resulting experimental
measurements with the predictions from the upscaled
model.
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Nomenclature

Ai cross-sectional surface of Region-i (i =

I, II), m2

bi, j closure variable that maps d〈cA j〉 j/dz
onto c̃Ai (i, j = I, II), m

cAi concentration of species A in Region-i
(i = I, II), mol/m3

c̃Ai concentration deviations of species A in
Region-i (i = I, II), mol/m3

〈cA〉 cross-sectional average of the
concentration of species A, mol/m3

〈cAi〉i cross-sectional average of the
concentration of species A in Region-i
(i = I, II), mol/m3

D dispersion coefficient in the equilibrium
model, m2/s

Di, j dispersion coefficients in the non-
equilibrium model, (i, j = I, II), m2/s

DAi molecular diffusivity of species A in
Region-i (i = I, II), m2/ s

De f f effective diffusivity in the porous
membrane, m2/ s

g gravity, m2/s
hI,II inter-regional transport coefficient in the

upscaled model, m2/ s
` width of the membrane, m
L length of the system, m
pi pressure in Region-i (i = I, II), Pa
P permeability of the porous membrane,

m/s
Pei Péclet number associated to Region-i

(i = I, II)
r radial direction, m
si closure variable that maps(

〈cAI〉I − 〈cAII〉II
)

onto c̃Ai, (i = I, II)
S h modified Sherwood number
r1, r2 radius of regions I and II, respectively, m
v velocity coefficient in the equilibrium

model, m/s
vi, j velocity coefficients in the non-

equilibrium model (i, j = I, II),
m/s

vzi velocity field in Region-i (i = I, II), m/s
ṽzi velocity deviations in Region-i (i =

I, II), m/s
z axial direction, m
Z dimensionless axial direction
Greek symbols
µi viscosity of the fluid in Region i (i =

I, II), kg/ms

θ angular direction, rad
ρi density of the fluid in Region i (i = I, II),

kg/m3

Subscripts
i0 value of a property at z = 0 in Region i

(i = I, II)
iL value of a property at z = L in Region i

(i = I, II)
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Appendix A: Closure problem
statement for mass transfer

In this section we derive and solve the closure problem
for mass transfer in both regions of the system. With
this aim, let us subtract Eq. (14a) to Eq. (1a) in order
to obtain
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〈vzI〉I ∂c̃AI

∂z︸      ︷︷      ︸
O

 〈vzI〉I c̃AI

L
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+ṽzI
∂〈cAI〉I
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+ ṽzI
∂c̃AI
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ṽzI
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DAI
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r
∂c̃AI
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O

DAI c̃AI

r2
1
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+ DAI
∂2c̃AI

∂z2︸     ︷︷     ︸
O

DAI c̃AI

L2
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− 2DAI

r1

∂c̃AI

∂r

∣∣∣∣∣
r1︸           ︷︷           ︸

O

DAI c̃AI

r2
1


(A.1)

here we have included the estimates of order of
magnitude of each homogeneous term with the aim
of pondering about the relevance that each of them
play in Eq. (A.1). Notice that, for the dispersive terms,
we have taken into account Eq. (19a) that leads us to
conclude that ṽzI = O(〈vzI〉I). From these estimates
we notice that the diffusive term in the radial direction
overcomes its counterpart in the axial direction, i.e.,

DAI
∂2c̃AI

∂z2 �
DAI

r
∂

∂r

(
r
∂c̃AI

∂r

)
(A.2)

as long as the following length-scale constraint is met

r2
1 � L2 (A.3)

Furthermore, all the convective terms may also be
neglected with respect to the diffusive term in the
radial direction,

〈vzI〉I ∂c̃AI

∂z
, ṽzI

∂c̃AI

∂z
,

〈
ṽzI
∂c̃AI

∂z

〉I

� DAI

r
∂

∂r

(
r
∂c̃AI

∂r

)
(A.4)

on the basis of the length-scale constraint

〈vzI〉Ir1

DAI︸   ︷︷   ︸
PeI

r1

L
� 1 (A.5)

Notice that this last constraint is consistent with the
one originally proposed by Taylor (1953, 1954) where
we have identified a Péclet number definition that will
be relevant in the evaluation of the model. Under these
circumstances, Eq. (A.1) is dramatically reduced to

ṽzI
d〈cAI〉I

dz︸      ︷︷      ︸
volume source

=
DAI

r
∂

∂r

(
r
∂c̃AI

∂r

)
− 2DAI

r1

∂c̃AI

∂r

∣∣∣∣∣
r1

(A.6)

here we have regarded the non-homogeneous term
in the differential equation as a volumetric source. It

is worth noting that, due to the constraint in (A.5),
for the determination of the concentration deviation
fields, d〈cAI〉I/dz can be safely regarded as a constant.
Following the same procedure for Region-II, we have
that the concentration deviations solve the differential
equation

−ṽzII
d〈cAII〉II

dz︸         ︷︷         ︸
volume source

=
DAII

r
∂

∂r

(
r
∂c̃AII

∂r

)
+

2DAIIr1

(r2
2 − r2

1)
∂c̃AII

∂r

∣∣∣∣∣
r1

(A.7)
The length-scale constraints supporting this result are,

〈vzII〉IIr2

DAII︸     ︷︷     ︸
PeII

r2

L
� 1 (A.8a)

r2
2 � L2 (A.8b)

To determine the boundary conditions applying to the
concentration deviations, let us substitute the spatial
decomposition cAi = 〈cAi〉i + c̃Ai (i = I, II) into eqs.
(3c), (3d) and (3f); the resulting expressions are

at r = r1, DAI
∂c̃AI

∂r
= DAII

∂c̃AII

∂r
(A.9a)

at r = r1, −DAI
∂c̃AI

∂r
= P(c̃AI − c̃AII)

+ P(〈cAI〉I − 〈cAII〉II)︸                  ︷︷                  ︸
sur f ace source

(A.9b)

at r = r2, DAII
∂c̃AII

∂r
= 0 (A.9c)

Finally, the concentration deviations fields must be
defined for all values of r and must also satisfy the
average constraints

〈c̃AI〉I = 0; 〈c̃AII〉II = 0 (A.10)

It is worth emphasizing the linear nature of the
closure problem, which is driven by the volume
sources d〈cAI〉I/dz and d〈cAII〉II/dz as well as by the
surface source (〈cAI〉I − 〈cAII〉II). These features will
be exploited in the derivation of the closure problem
solution.

Appendix B: Closure problem
solution
This section is devoted to the derivation of the
analytical solution of the closure problem. To achieve
this goal, we integrate Eq. (A.6) twice taking into
account the fact that the deviation fields must be
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defined for any value of r, the resulting expression can
be written as

c̃AI =
PeI

4ξ1

ξ2 − ξ4

2ξ2
1

 d〈cAI〉I
dZ

+
ξ2

2ξ1

∂c̃AI

∂ξ

∣∣∣∣∣
ξ1

+ cI

(B.1)
here Z = z/r2.

Furthermore, integrating twice Eq. (A.7), taking
into account the Neumann-type boundary condition in
Eq. (A.9c) as well as the boundary condition in Eq.
(A.9a), leads to

c̃AII =
PeII

2δ

ξ2 ln
ξ

ξ1
− ξ

2

2
−


(
ξ2

1 − 1
)
ξ2

2
− ξ

4

4
+ ξ2

1 ln ξ

 χ


d〈cAII〉II

dZ
+

ξ1DAI(
1 − ξ2

1

)
DAII

∂c̃AI

∂ξ

∣∣∣∣∣
ξ1

(
ln ξ − ξ

2

2

)
+ cII

(B.2)

To determine the constants of integration cI and cII

we use the average constraints given in Eq. (A.10), in
order to obtain,

cI = −PeIξ1

12
d〈cAI〉I

dZ
− ξ1

4
∂c̃AI

∂ξ

∣∣∣∣∣
ξ1

(B.3a)

cII = − PeII

δ

d〈cAII〉II

dZ

−
1

4
χ +

3
(
1 + ξ2

1

)
16


+

(
4 + 3ξ2

1 − 9ξ4
1 + 2ξ6

1 + 12ξ4
1 ln ξ1

) χ

24
(
1 − ξ2

1

) 
+

ξ1DAI(
1 − ξ2

1

)
DAII

∂c̃AI

∂ξ

∣∣∣∣∣
ξ1

ξ2
1χ +

3 + ξ2
1

4

 (B.3b)

Clearly the fields of the closure variables, in their
present form, are written in terms of ∂c̃AI

∂ξ

∣∣∣∣
ξ1

, which

is unknown. To determine it, we make use of the
boundary condition given by Eq. (A.9b); the resulting
expression is

ξ1
∂c̃AI

∂ξ

∣∣∣∣∣
ξ1

= PeIξ1α
d〈cAI〉I

dZ
± PeIIβ

d〈cAII〉II

dZ

+ 24α
(
〈cAI〉I − 〈cAII〉II

)
(B.4)

As a matter of brevity, we introduced the following

definitions,

S h =
P r2

DAI
(B.5a)

α =

 DAI

DAII

24χ + 6
(
3 − ξ2

1

)
1 − ξ2

1

 − 6 − 24
S hξ1


−1

(B.5b)

β =
α

δ

(ξ6
1 − 3ξ2

1 + 2 − 12ξ2
1 ln ξ1

) χ(
1 − ξ2

1

) − 3
2

(
ξ2

1 − 3
)

(B.5c)

In this way, we may re-write eqs. (B.1) and (B.2) in
their final form,

c̃AI =
PeIξ1

4

 (2α + 1) ξ2

ξ2
1

− ξ4

2ξ4
1

− 1
3
− α

 d〈cAI〉I
dZ

− PeII β

2

ξ2

ξ2
1

− 1
2

 d〈cAII〉II

dZ

+ 12α
ξ2

ξ2
1

− 1
2

 (〈cAI〉I − 〈cAII〉II
)

(B.6a)

c̃AII = PeI ξ1DAIα(
1 − ξ2

1

)
DAII

ln ξ − ξ2

2
+ ξ2

1χ +
3 + ξ2

1

4

 d〈cAI〉I
dZ

− PeII

δ

−1
2
ξ2 ln

ξ

ξ1
− ξ

4χ

8
+
γ1ξ

2/4 + γ2 ln ξ + γ0

1 − ξ2
1

 d〈cAII〉II

dZ

+
24DAIα(

1 − ξ2
1

)
DAII

ln ξ − ξ2

2
+ ξ2

1χ +
3 + ξ2

1

4

 (〈cAI〉I − 〈cAII〉II
)

(B.6b)

which have the same structure as eqs. (22). To
simplify the structure of eqs. (B.6), we introduced

γ0 =
DAIδβ

DAII

ξ2
1χ ln ξ1 +

3 + ξ2
1

4

 − 1
4

ln ξ1 +
3
(
1 − ξ4

1

)
4


+

(
4 + 3ξ2

1 − 9ξ4
1 + 2ξ6

1 + 12ξ4
1 ln ξ1

) χ
24

(B.7a)

γ1 =
(
ξ2

1 − 1
)

(ln ξ1 − 1) − 2DAIδβ

DAII
(B.7b)

γ2 =
ln ξ1

2
ξ2

1 +
DAIδβ

DAII
(B.7c)
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